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The non-similar normal modes of free oscillations of a coupled non-linear oscillator are
examined. So far, the study of non-linear vibrations has been based on the assumption that
the system is admissible. This requirement is satis"ed when the sti!ness of the springs are
odd functions of their displacement. In this work, a two-degrees-of-freedom tuned system is
considered with sti!ness elements having linear, quadratic and cubic non-linearities. The
potential energy function of this system is not symmetric with respect to the origin
(equilibrium point) of the con"guration space due to the presence of the quadratic
non-linearity. Hence, the system considered is no longer admissible. A study of the balancing
diagrams is performed to determine the &&degenerate'' and &&global'' similar modes of the
system. Manevich}Mikhlin asymptotic methodology is used for solving the singular
di!erential equation describing the non-similar modes and approximate analytical
expressions are derived. For this system, with weak coupling, localized non-similar modes
are detected in a small neighborhood of degenerate similar modes of the tuned system.
Numerical integration is used to verify theoretically predicted non-similar normal modes. It
is found that these modes pass periodically through a non-zero point in the con"guration
space.

( 2002 Academic Press
1. INTRODUCTION

The concept of normal modes and their importance in the context of linearized systems is
long known. In early 1960s, Rosenberg published a series of papers on normal modes for
discrete/continuous strongly non-linear dynamical systems, the results of which were
subsequently included in a review paper [1]. This work laid the foundation for further
developments on various aspects of non-linear normal modes (NNMs). A good account of
these may be found in references [2}4].

According to Rosenberg [1], NNMs are de"ned as the free motions where all
co-ordinates vary equiperiodically, passing through the equilibrium point in the
con"guration space simultaneously and reaching their extreme values at the same instant of
time. Subsequent works [5}8] showed that for non-linear systems, the number of normal
modes can exceed the number of degrees of freedom. Modal curves may assume the shape of
straight lines (similar NNMs) or curved lines (non-similar NNMs) in the con"guration
space. The curved modal lines which turn out as the solutions of a set of functional
di!erential equations, make these equations singular at the intersection points of the
maximum equipotential surface [1]. In this regard, methods were suggested [9}12] to
obtain approximate (asymptotic) solutions.
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Following the basic concepts of NNMs [1], Vakakis [13] brought out the phenomenon
of normal mode localization for an admissible non-linear two-degrees-of-freedom system. It
was shown therein that, in contrast to similar linear systems, weak substructure coupling
gives rise to mode localization even in the case of no mistuning in the anchor springs. It was
also clear from that study that these localized modes turn out to be non-similar in nature.
An asymptotic methodology established by Manevich and Mikhlin [12] was followed for
"nding approximate solution of the singular functional equation. Stability of the localized
modes was also investigated analytically and numerically. In addition, other interesting
results on non-localized NNMs were reported. Subsequently, Happawana and Bajaj [14]
used Frobenius' method to obtain closed-form series solutions in di!erent stages of the
asymptotic expansion in the same problem to obtain better estimates for larger values of the
independent co-ordinate.

In almost all the developments that have taken place so far on NNMs, it is found that the
springs consist of linear and cubic non-linearity terms. Naturally, the potential energy
function is symmetric with respect to the origin (equilibrium point) of the con"guration
space. Hence the NNMs, either similar or non-similar, pass through the origin. This
situation may change if in addition a quaH dratic non-linear spring force is also present.
Nayfeh and Nayfeh [15], in the context of a simply supported Euler}Bernoulli beam, dealt
with linear, quadratic and cubic non-linearities and concluded that &&vibration-in-unison''
does not occur due to the presence of the quadratic non-linear terms. Hence, every point of
the continuous system does not pass through zero at the same instant of time.

The NNMs of a portal frame structure was studied by Balthazer and Brasil [16] in which
the restoring forces were assumed to be linear and quadratic type. The conditions for the
model to execute similar NNMs were determined.

The primary goal of this work is directed towards the study of non-linear normal mode
localization for weak substructure coupling in a perfectly symmetric (tuned), conservative,
two-degrees-of-freedom system. The restoring force in all the spring elements is given by
linear, quadratic and cubic non-linear terms. The method outlined in reference [13] will be
combined with the bisection method to compute approximately the localized non-similar
NNMs in the con"guration space.

2. FORMULATION OF THE PROBLEM

Figure 1 shows a two-degrees-of-freedom system consisting of two unit masses and
relevant spring forces. The potential and kinetic energy functions of the system are
considered as
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Use of equation (1) in conjunction with the Lagrange's method gives the following
equations of motion:
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Figure 1. Two-degree-of-freedom system model.

MODE LOCALIZATION WITH QUADRATIC AND CUBIC NON-LINEARITIES 911
Equations (2) and (3) are to be solved with the initial conditions x
1
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1
, xR

1
(0)"0,

x
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2
, xR

2
(0)"0, where (X

1
, X

2
) refer to one extreme of modal oscillation, and

without any loss of generality, it is assumed that X
1
'0. The scalars a

1
and a

2
are the

quadratic sti!ness coe$cients of the end and coupling-springs, respectively, while k
1

and k
2

are the respective cubic non-linearity coe$cients; and k
1

stands for the linear coupling
sti!ness.

The tuned oscillator has similar normal modes given by x
2
"cx

1
, where c is found from

equations (2) and (3) by following the procedure outlined in reference [13]. The algebraic
equations in this case turn out to be
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These equations form the balancing diagrams for the linear, quadratic and cubic non-linear
coe$cients, respectively, as shown in Figure 2.

The linear balancing diagram obtained from equation (4) shows that for k
1
O0, the

modal constant c is either 1 or !1 corresponding to the symmetric and antisymmetric
modes of linear vibration. In addition, a &&degenerate'' case exists when k

1
"0. In that case,

the variable c can take an arbitrary positive or negative value. Considering the quadratic
balancing diagram (equation (5)), it is seen that c"1 is a solution along with two additional
solutions which depend on a

2
/a

1
with degenerate cases as a

2
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1
P0. The cubic balancing

diagram, as suggested by equation (6) shows that c"1,!1 are the solutions; additional
solutions also exist for low values of the ratio k

2
/k

1
(weak coupling) resulting from

a bifurcation of the antisymmetric similar normal mode which degenerates as k
2
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1
P0.

Figures 2(a}c) show all the three balancing diagrams.
When linear, quadratic and cubic sti!ness terms coexist (as in the present case), the

permissible values of c must satisfy all the three balancing diagrams. For non-zero
substructure coupling (k

1
, a

2
and k

2
non-zero) the only common value for c is 1, giving rise

to a symmetric similar NNM passing through the origin of the con"guration space.
However, additional solutions exist as k

1
, a

2
, k

2
P0 corresponding to degenerate similar

modes. It will be shown later that in the neighborhood of these degenerate modes, localized,
non-similar normal modes exist for the tuned non-linear system. Four such degenerate



Figure 2. (a) Linear, (b) quadratic and (c) cubic balancing diagrams.
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similar modes are thus identi"ed and grouped below.
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These localized modes exist very close to the corresponding degenerate similar modes and
describe "nite motion of only mass 1 in the "rst two cases, and mass 2 in the latter two cases,
the vibration of the other mass remaining con"ned to a much smaller magnitude.

=eak substructure coupling: The asymptotic methodology of Vakakis [13] will now be
applied to determine the non-similar normal modes of the oscillator. Since weak
substructure coupling is assumed, the linear, quadratic and cubic terms of the coupling
sti!ness are assumed to be small, as given below
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where e is the perturbation parameter. A non-linear NNM in the present case is assumed to
have the following form:
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Since this relation must hold for every value of time, the derivatives of the co-ordinates
during a non-similar normal mode can be expressed by the chain rule as

xR
2
"xL @

2
)xR

1
, xK

2
"xL A

2
)x2

1
#xL @

2
) xK

1
, (9)
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and ( ) )"d/dt. Substituting equation (7) into equations (2) and (3), one
obtains

xK
1
#x

1
#a

1
x2
1
#k

1
x3
1
#eK

1
(x

1
!x

2
)#e¸

2
(x

1
!x

2
)2#eM

2
(x

1
!x

2
)3"0. (10)

xK
2
#x

2
#a

1
x2
2
#k

1
x3
2
!eK

1
(x

1
!x

2
)!e¸

2
(x

1
!x

2
)2!eM

2
(x

1
!x

2
)3"0. (11)

Integration of equation (10) with equation (8) gives
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Finally, use of equations (9) and (12) in equation (11) yields the functional equation for the
(unknown) modal function xL
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). Thus,
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The functional equation becomes singular at the maximum equipotential curve (i.e., when
;";

max
). This happens because the coe$cient of the second derivative of x

2
becomes zero

at these points. As mentioned earlier, X
1
'0 is one extreme value of x

1
and corresponds to

the intersection of the modal curve with the maximum equipotential curve. As the function
within the integral sign is not odd, the same coe$cient will not be zero for x

1
"!X

1
for the

fact that the maximum equipotential curve is not symmetric about the origin. As a result,
there exists a x

1
"X*

1
(0, hitherto unknown, for which the same coe$cient is bound to be

zero again. This value of x
1

physically relates to the other extreme point during oscillation.
The asymptotic approximation to the solution will be valid in the interval (X*

1
, X

1
). To

guarantee that the series solution intersects the maximum equipotential curve at the points
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and a similar condition exists at the other end, i.e., at (x
1
, x
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As given in reference [13], the asymptotic solution is assumed as
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where the order of magnitudes of the individual terms and their derivatives are

O(xL (0)
2

)"1, O(xL (1)
2

)"O(xL (1){
2

)"O(xL (1){{
2

)"O(e). (16)

The displacement x
1

is assumed to be "nite (of O(1)), and higher approximations xL (k)
2

, k*2
are assumed to be of O(e2) or higher. Series (15) is now substituted in equation (13) and
equations of various order of e can be formed with the help of equation (16).

O(1) approximation: The zero order approximation xL (0)
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) in series (15) corresponds to

the similar modes, and therefore has the form
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where the modal constant c is of O(1). The results are the same as those obtained earlier and
are shown in the balancing diagrams (Figure 2).

O(e) approximation: The non-similar free motions resulting as perturbations of the
degenerate similar normal modes will now be computed by considering O(e) terms. Taking
into account the zero order approximation with c"0, the following functional equation is
obtained:
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This is the functional equation of "rst order that must be satis"ed by xL (1)
2

. In addition to
this equation, the following boundary conditions of "rst order must be considered (this is
derived in a similar way considering the boundary orthogonality condition (14) and
retaining only terms up to O (e)). Thus,
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Since, it is expected that the curved NNM will not pass through the origin of the
con"guration space, the solution for xL (1)

2
is now expressed in the form
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When this series solution is substituted in equation (18) and coe$cients of respective powers
of x

1
are set equal to zero, the following relations among the unknown constants result:
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The constant b(1)
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is expressed in terms of b(1)
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with the help of equations (19) and (21)}(23)
as follows:
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In view of expressions (21)} (24), it is clear that determination of all other constants except
b(1)
23

is contingent upon "nding b(1)
20

. The following procedure is adopted to determine the
value of b(1)

20
.

(1) Note from equation (20) that for x
1
"0, xL (1)

2
"b(1)

20
"O(e). Thus, an initial value of
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of O(e) is assumed. The corresponding values of b(1)
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calculated using expressions (21)}(24).

(2) Coe$cients b(1)
2j

so determined with initial X
1

are used to evaluate X
2

from equation
(20).

(3) Substituting equation (15) in the potential energy function (1) using equation (7) and
retaining terms up to O(e2), one obtains the maximum potential energy of the system
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) as
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This expression must also be satis"ed at the other end by (X*
1
, X*

2
). The value of X*

1
is

now determined at the intersection of the modal curve with the ;
max

curve by use of
the bisection method with an accuracy level of 10~6.

(4) X*
1

must also satisfy the boundary orthogonality condition similar to equation (14).
(5) The value of b(1)

20
is changed and steps (1)} (3) are repeated until the step (4) is satis"ed

to within an accuracy of 10~6.
(6) A unique value of b(1)

20
is thus determined and subsequently b(1)

21
, b(1)

22
, b(1)

23
, and b(1)

24
are

calculated using expressions (21)}(24). Finally, these numerical values may be
substituted in equation (20) to obtain the localized non-similar NNM. Since the terms



Figure 3. (a) Modal curve for the system, (b) time response for the system, (c) velocity response for the system.
Initial conditions used are x
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of order e2 and higher have been neglected, the solutions obtained provide an
approximation of the actual solution only for small "nite values of X

1
.

The coe$cients b(1)
2j

depend explicitly on the amplitude X
1
. Therefore, the modal curve

depends on one of the extreme points of oscillation (or, equivalently on the total energy of
the motion). This is in agreement with the prediction made in reference [1] concerning
non-similar modes.

The modal relation (20) corresponds to a motion where the co-ordinate x
1

takes "nite
values, whereas the co-ordinate x

2
is always of O(e). Another set of localized modes can be

found for the degenerate solution at c"!R. In this case x
2

has "nite values, while x
1

is of
perturbation order. To compute it, the modal curve must be expressed as

x
1
"xL

1
(x

2
) (26)

and similar procedure with some adjustments in the equations may be repeated.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical computations are performed in order to compute the predicted non-similar
localized modes with weak substructure coupling. The non-linear equations of motion (10)
and (11) have been numerically integrated using a fourth order Runge}Kutta algorithm
and with initial conditions that are identical to the ones obtained from the foregoing
method.



Figure 4. (a) Modal curve for the system, (b) time response for the system, (c) velocity response for the system.
Initial conditions used are x
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The "rst simulation is done for a
1
"k

1
"1, and k

1
"a

2
"k

2
"0)005. This falls in the

category of case (1) in section 2. The degenerate similar mode exists for c"0 for which the
non-similar mode shows con"nement of oscillation of mass 2. For X

1
"0)5, the value of

X
2

is found to be !0)043424 and a modal curve is obtained which can be improved by
slight adjustment in the third place of decimal, as shown in Figure 3(a). It is to be observed
in this "gure that the modal curve does not pass through the origin of the con"guration
space. However, there exists a non-zero point through which both masses pass at the same
instant of time as suggested by Figures 3(a) and 3(b). The displacement and velocity
responses (Figures 3(b) and 3(c)) also show that the two masses are mostly out of phase, i.e.,
they move in opposite directions and reach their extremes at the same instant of time
where the velocities become zero. The same degenerate similar mode is also approached
for k

1
"k

2
"0)005 and a

2
"!0)005 (case (4), section 2) for which identical values have

been obtained with X
1

and X
2

being replaced by each other, i.e., mass 1 is now almost
stationary.

Simulation results are presented for a
1
"k

1
"1, k

1
"k

2
"a

2
"!0)005 (case (2),

section 2) for which the entire motion is con"ned to mass 1. The initial values obtained are
X

1
"0)5, X

2
"0)043424 which give a slightly banded modal curve. This banded nature is

removed by adjustment in the third place of decimal to get the value of X
2

as 0)040125
for which the resulting modal curve is shown in Figure 4(a). This error can be removed
by considering second order approximations in equation (15), the analysis of which
is beyond the scope of this paper. As in the above cases, the displacement and
velocity responses (Figures 4(b) and 4(c)) show that the trajectories intersect at non-zero
points and the two masses are in phase. Identical values have been obtained for
k
1
"k

2
"!0)005 and a

2
"0)005 (case (3), section 2) with the roles of X

1
and X

2
interchanged.
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4. CONCLUDING REMARKS

In this study, the non-similar normal modes of free oscillation of a two-degrees-of-
freedom, coupled, non-linear oscillator with quadratic and cubic non-linearities have been
examined following the asymptotic methodology given in reference [13].

It has been shown analytically that for weak substructure coupling, the oscillator
possesses localized non-similar modes, since the motion is approximately con"ned to only
one of the two co-ordinates. This result has also been veri"ed through simulation. It is to be
noted that the modal trajectory passes periodically through a non-zero point, and not
through the origin (the equilibrium point) of the two-dimensional space. In other words, the
calculated modes are not &&vibrations-in-unison'' as also indicated by reference [15]. Such
motions can be designated as motion in normal mode if Rosenberg's de"nition of normal
modes [1] is relaxed. Stability of the localized modes is checked indirectly by the
Runge}Kutta solutions that give bounded solution in every case.

The balancing diagrams (Figure 2) show that in the case when three sti!ness terms
are present, a similar normal mode corresponding to c"1 (symmetric mode) always
exists and is a vibration-in-unison. Same result is also obtained by applying the
MMS [15] to the present discrete system. This method also yields the result that
non-local, non-similar modes, not passing through the origin of the con"guration
plane, appear near the similar antisymmetric linear mode. However, in the limit when k

1
,

a
2
/a

1
and k

2
/k

1
P0, the degenerate non-similar normal mode could not be determined.

The authors believe that slight variation of reference [15] may be needed to achieve this
result.

The presence of linear and quadratic non-linear terms does not ensure global stability of
the two-degrees-of-freedom conservative system, although it may be stable locally. The
cubic non-linear terms are added to achieve the global stability. This can be proved very
easily for the special case of the symmetric, similar normal modes.
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